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It is well known that there are some similarities among
various naturally occurring amino acids. Thus, the com-
plexity in protein systems could be reduced by sorting
these amino acids with similarities into groups and then
protein sequences can be simpli®ed by reduced alphabets.
This paper discusses how to group similar amino acids
and whether there is a minimal amino acid alphabet by
which proteins can be folded. Various reduced alphabets
are obtained by reserving the maximal information for the
simpli®ed protein sequence compared with the parent
sequence using global sequence alignment. With these
reduced alphabets and simpli®ed similarity matrices, we
achieve recognition of the protein fold based on the simi-
larity score of the sequence alignment. The coverage in
dataset SCOP40 for various levels of reduction on the
amino acid types is obtained, which is the number of
homologous pairs detected by program BLAST to the
number marked by SCOP40. For the reduced alphabets
containing 10 types of amino acids, the ability to detect
distantly related folds remains almost at the same level as
that by the alphabet of 20 types of amino acids, which
implies that 10 types of amino acids may be the degree of
freedom for characterizing the complexity in proteins.
Keywords: compositions of amino acids/protein fold
recognition/reduced alphabet of amino acids/residue
grouping/similarity matrix

Introduction

Proteins are the elementary blocks which execute biological
functions in living organisms. There are many types of proteins
in nature that carry out various complicated activities. Proteins
are composed of 20 types of naturally occurring amino acids,
and the majority of proteins are encoded by complex patterns
of these 20 types of amino acids. That is, 20 types of amino
acids introduce not only diversity and complexity into proteins,
but also some speci®c propensities. For example, some amino
acids are similar in physicochemical properties (Mathews and
Van Holde, 1995) and mutations of amino acids can be
tolerated in many regions of a sequence (Sinha and Nussinov,
2001). It has been discovered experimentally that some
designed proteins with fewer than 20 types of residues can
have stable native structures and contain nearly as much
information as natural proteins (Regan and Degrado, 1988;
Kamtekear et al., 1993; Davidson et al., 1995; Riddle et al.,
1997).

Recently, a 57 residue Src SH3 domain with a b-barrel-like
structure was studied (Riddle et al., 1997), and 38 out of 40
targeted residues in the domain could be replaced with ®ve
types of residues (Ile, Ala, Glu, Lys, Gly). From a physics
viewpoint, this may imply that a 20 letter alphabet can be
reduced into an N letter alphabet by clustering the similar
amino acids into N groups, and then N letters can be chosen as
the representative residues of these N groups (Chan, 1999;
Wang and Wang, 1999). Obviously, the simplest reduction is
the so-called HP model (Chan and Dill, 1989; Lau and Dill,
1989), where 20 types of amino acids are divided into two
groups: H group and P group (H, hydrophobic residues; P, polar
residues). Interestingly, such a type of simple two-letter HP
model or the HP-like patterns could reproduce, to some extent,
the kinetics and thermodynamics of protein folding and could
be used to study the mechanism of folding (Regan and Degrado,
1988; Kamtekear et al., 1993; Davidson et al., 1995).
Previously, a ®ve-letter alphabet based on the statistical
potential matrix by Miyazawa and Jernigan (MJ) [a pairwise
interaction potential between amino acids (Miyazawa and
Jernigan, 1996)] was studied (Chan, 1999; Wang and Wang,
1999). In that reduction, ®ve representative residues were given
as (Ile, Ala, Glu, Lys, Gly), which coincide with the experi-
mental results of the 57 residue SH3 domain by Baker and co-
workers (Riddle et al., 1997). (Hereafter, the residues are
simply represented as single letters.) One of the advantages of
such a reduction is that it reduces greatly the complexity of the
protein sequences. It has been shown that sequences with these
®ve types of letters have good foldability and kinetic access-
ibility in studies of protein-model chains (Wang and Wang,
2000). Some other simpli®ed alphabets were also proposed
(Reidhaar-olson and Sauer, 1988; Smith and Smith, 1990;
Murphy et al., 2000; Soils and Rackovsky, 2000; Cieplak et al.,
2001). For example, an alphabet studied by Murphy et al.
(Murphy et al., 2000) was obtained from the similarity matrices
of the amino acids that characterize the correlation between the
amino acids. Cieplak et al. (Cieplak et al., 2001) simpli®ed the
folding alphabet based on a `distance' of the hydrophobicity of
the natural residues de®ned through the MJ matrix. The
alphabet by Solis and Rackovsky (Solis and Rackovsky, 2000)
was obtained by reserving the maximal information in proteins.
In this work, the authors analyzed the relation between residues
based on their similarities that are extracted from the
interactions between the amino acids or amino acid sequence
alignment, by using various clustering schemes. The residues
were depicted as a vector in 20-dimensional space spanned with
their inter-relationship. To some degree, however, these
descriptions omit some possible correlations of the residues
within the groups. Is the consideration on the detailed
distribution or correlation of the residues in the groups helpful
for producing useful groupings related to some speci®c
proteins? Obviously, this is an important question for amino
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acid grouping studies. Its answer might promote the application
of the grouping results.

The naturally occurring frequencies of 20 types of residues
in proteins follow some type of pattern. The compositions of 20
types of amino acids in proteins may provide useful informa-
tion for the simpli®cation of the residue alphabet. In this paper,
we integrate the information on compositions of residues into
the reduction of the residue alphabet, and cluster similar amino
acids into groups using a global alignment method. The
representative residues for each group are also obtained. Then,
the recognition tests with the reduced alphabets are discussed.
By using a simpli®ed BLOSUM matrix based on these
schemes, we perform an `all-against-all' sequence alignment
and make coverage detection on the distantly related homo-
logous proteins throughout the database SCOP40 (Brenner
et al., 1998) for various levels of reduction. A platform of
around 10 types of residues is obtained in a plot of the coverage
versus the reduced alphabet size, indicating that 10 types of
residues may be the minimum number of letters required to
construct a rational folding model.

The paper is organized as follows. In the next section, we
study the simpli®ed alphabets by dividing the naturally
occurring 20 types of amino acids into different numbers of
groups. We make the simpli®cation based on similarity score
from the BLOSUM matrix. In the following section, we
perform an evaluation of our simpli®ed alphabets by compar-
ing the coverage of the simpli®ed matrix with the database of
SCOP40. Finally, we present a brief summary.

Grouping residues based on reasonable simpli®cation of
protein sequence

Methods

As is already known, the so-called sequence alignment method
is generally used to measure the degree of similarity between
two protein sequences. To evaluate competing alignments, a
substitution matrix is necessary, in which different scores are
assigned to different exchanges of one amino acid with
another. In general, a positive score indicates that two residues
are similar, and substitution or mutation between them may be
applicable. While a negative score implies that two residues are
fairly different, and mutation between them may be unfavor-
able. There are many substitution matrices proposed according
to the different scoring schemes, among which BLOSUM is the
most widely used (Henikoff and Henikoff, 1992) and
BLOSUM62 is usually the default choice for many sequence
alignment programs, e.g. BLAST (Altschul et al., 1990).

In this work, we use BLOSUM62 as a starting point to
simplify the amino acid alphabet, and try to ®nd the related
representative residues for each reduced alphabet. Our purpose
here is to ®nd an optimal grouping scheme with which the
simpli®ed sequence can reserve the maximal information on
the original sequence. Our physical hypothesis is as follows.
Suppose that a protein sequence, denoted Seq0, is a speci®c

arrangement of 20 types of amino acids (here we consider 20
types of residues) (see Figure 1). The sequence can be
simpli®ed by classifying the amino acids into different groups
and by replacing the amino acids with the representative one in
its group. For example, if 20 types of amino acids are classi®ed
into N groups, say N = 3 groups, we have group 1 with residues
(F, W, Y, C, M, I, L, V), group 2 with (A, G, T, S, P) and group
3 with (N, Q, D, E, H, R, K). We could use X1 to represent the
whole residues in group 1, X2 those in group 2 and X3 those in
group 3, i.e. X1, X2 and X3 are the representative residues in
group 1, group 2 and group 3, respectively. Thus, the parent
sequence Seq0 is simpli®ed into Seqs, and such a simpli®cation
is indicated in Figure 1. Our main task is to calculate the
similarity scores between the two sequences Seq0 and Seqs for
various assignments of residues in N groups, among which one
assignment with the maximal similarity score will be the best
grouping of the residues. Such a grouping is regarded as the
most reasonable one since it may reserve maximally the
information or the content of the parent sequence. In the
following, we give more details on how to obtain the optimal
grouping scheme.

Since Xi could be any one of the residues in the ith group, we
de®ne the jth residue in the ith group as Xi(j). Speci®cally, the
similarity score of Xi(j) in the ith group in Seqs to the kth
residue Rk in the ith group in Seq0 is

S(Xi(j), Rk) = Blosum(Xi(j), Rk) (1)

where Blosum(Xi(j),Rk) is the element in the substitution matrix
for exchange of residue Xi(j) with residue Rk. Then, the
similarity score between all pairs of residue Rk and residue Xi(j)
in the ith group in the protein sequence is

S�Xi�j�� �
Xg�i�

k�1
mi�k�S�Xi�j�;Rk� �2�

where g(i) is the number of residue types in the ith group, mi(k)
is the number of the residue Rk in Seq0, and k runs over the
whole ith group. Since Xi(j) could be any one of the g(i)
residues in the ith group, we can use an average similar score
for these different choices to describe the simpli®cation:

Si �
Xg�i�

j�1
S�Xi�j��

h i
=g�i� �3�

Then, the total similarity score of the simpli®ed sequence Seqs

to the parent sequence Seq0 is calculated as the sum of the
scores over all groups:

S �
XN

i�1
Si �4�

Fig. 1. Sketch map for the simpli®cation of 20 types of residues for group number N = 3. The three groups are: (F, W, Y, C, M, I, L, V), (A, G, T, S, P) and
(N, Q, D, E, H, R, K). The representative residues of three groups are set as X1, X2 and X3, respectively. Seq0 is the original protein sequence and Seqs is the
simpli®ed one.
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where N is the number of groups. Clearly, S is a measure of the
reservation of the information on the parent sequence. One can
see that different assignments or distributions, denoted as
groupings, of the residues in all groups lead to different values
of S. For a given number of groups N and a set of numbers ni of
residues in each group (n1, n2, ¼, nN) (Wang and Wang, 1999)
with

PN
i�1 ni = 20, we can always ®nd a speci®c grouping of

residues with a maximal value of S, i.e. S = S¢max. Such a
grouping is regarded as the best or the most reasonable one
since it may reserve the maximal information on the parent
sequence or has a maximal similarity to the parent sequence.

It is clear that this grouping scheme is related only to the
substitution matrix and the compositions of residues in Seq0,
while the length of Seq0 and the speci®c order of 20 types of
residues in Seq0 have no effect on our results. However, a lot of
work indicated that the naturally occurring frequencies or the
compositions of 20 types of residues in proteins show a speci®c
distribution. It seems that the compositions of residues in
proteins (distribution of residues) have reached their equilib-
rium during their long evolutionary history, and most proteins
comply with this distribution of compositions for all residues.
Thus, the average compositions of 20 types of amino acids
from a radical protein sequence database SWISS-PROT
(version 37) are used in the following studies, where over
80 000 sequences in this database are used for statistics
(Z.P.Feng and C.T.Zhang, personal communication on the
results over 80 000 protein sequences from database SWISS-
PROT). The length of sequence is set as 300 in the following
calculations.

The number of possible assignments for 20 types of amino
acids is enormous. For example, there are more than 5131012

ways to make simpli®ed amino acid alphabets and more than
1531012 simpli®ed alphabets where 20 amino acids are
represented by a reduced set of eight symbols (Cannata et al.,
2002). Approximately 17 years would be needed to complete
the analysis of the 5131012 possible simpli®ed amino acid
alphabets if we could calculate it on our computer with an
average scanning rate of 6 million simpli®ed alphabets per
minute. Thus, an exhaustive search for the maximum of the
scores is not feasible. It is also worth noting that the
enumeration for the grouping is only for several cases, e.g.
the cases of N = 2, 3, 18 and 19 (Wang and Wang, 1999, 2002).
Thus, a heuristic Monte Carlo (MC) method is used to
approach the optimal solution. The MC cycle for a case of N =
3 can be performed using the following steps:

(i) For a grouping with N groups, we enumerate the number
of sets that characterize the number of residues in every
group (Wang and Wang, 1999). For example, for N = 3,
the number of sets is 33, such as (1, 1, 18), (1, 2, 17), (1, 3,
16), etc. For the set (1, 1, 18), we have one residue in group
1, one residue in group 2 and 18 residues in group 3.
Twenty types of residues are randomly assigned in these
three groups.

(ii) For a certain distribution of residues in these N groups, the
score S can be obtained from Equation 4, which describes
the feature of the present grouping.

(iii) Exchange two residues between two groups, i.e. make a
move in a space spanned with various groupings. Clearly,
this type of move keeps the set unchanged. Whether such a
move is accepted or not depends on a Metropolis criterion
(Metropolis et al., 1953), i.e. the probability of accepting
the move is P = exp(Sold ± Snew)/TMC. If P is larger than a
random number in [0, 1], the move is accepted; otherwise,

the move is rejected. Here, TMC is an arti®cial temperature
for the MC sampling, and is chosen to be 1.0. It is noted
that different choices of the value of TMC will not affect
the result.

(iv) With this type of move, an MC search is used to ®nd a
maximal value of the score S¢max. Due to the bias towards
the high score case, generally, it may be unnecessary to
exhaust the whole space. In our work, 107 MC steps are
generally enough for the search of the maximal value of
S¢max.

(v) Go back to step (i), and repeat the simulations for another
set, we ®nd another S¢max for this set, i.e. change the
numbers of residues in various groups and get the
corresponding distribution of the maximum score.

(vi) After the simulations for all sets for a given N, we then ®nd
a global maximal Smax among all S¢max. The grouping with
the global maximum score Smax is taken as our ®nal result
of grouping for N groups.

As a further step for the reduction of the complexity of
proteins, a set of representative residues for N groups should be
identi®ed. In every group, one residue should be set as a
representative residue. Thus, for a given reduced grouping, the
protein sequence made of 20 types of amino acids can be
simpli®ed by a set of representative residues Xi

P with i = 1, 2,
¼, N. The similarity score of the simpli®ed sequence to the
parent sequence can be calculated by

SP �
XN

i�1

Xg�i�
k�1

Blosum�Rk;X
P
i �m�k�

��
�5�

Here, Xi
P could be one of the residues in the ith group. From

Equation 5, one can see that different sets of representative
residues as input have different values of the scores for the
simpli®ed sequences to the parent sequence for a given
grouping of 20 types of residues. The most reasonable set of
representative residues is the one with the largest score from
Equation 5. It is this set of representative residues that can
possess the largest similarity between the simpli®ed sequences
and the parent sequence for a given N.

Results

The reduced groupings obtained by the above procedures are
listed in Table I. We can see that from N = 12 to 20 the
groupings are basically continuous, i.e. there is no interlace of
residues in the nearest levels of reduced groupings. If two
residues were separated in two groups in a subtle classi®cation,
say N, they should be in the same group in a coarser
classi®cation with group number (N ± 1). However, there is
one exception for the intermediate level of reduction. Residue
H stays together with the hydrophilic residues from N = 2±4
and N = 12±19, but joins to the group (F, W, Y) from N = 5 to 9.
This type of interlacing may result from the competition
between detailed features of the residues between these two
groups. This shows the underlying complexity in the grouping
problem. Furthermore, those alphabets whose S values are
slightly less than the largest one appearing in the MC processes
are also recorded from N = 2 to 19. For N = 2±19, the
differences between the largest score and the second largest
score are large. This means that the corresponding reduced
alphabets have greater superiority compared with the other
alphabets, and they are the most reasonable reductions. For
other cases, the differences in the S value between the largest
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score and some others are small. Thus, there may not be much
priority for the alphabet of maximal scores compared with
those alphabets whose S values are close to the maximal one,
and some other parameters should be considered. Non-
interlacing of residues for various N may be an important
factor to decide the grouping. Next, we propose a method to
solve the interlace problem in grouping.

In order to determine the ®nal result of the groupings, two
considerations should be made: (i) the gap of scores between
the largest one and the others is large for N = 2 and 19,
respectively; (ii) the groupings corresponding to the maximum
scores in Table I have no interlacing of amino acids from N = 2
to 3 and N = 12 to 19; these groupings should be kept.
Therefore, we select the groupings in such a way that for N =
2±3 and N = 12±19, the detailed classi®cations of amino acids
are the same as in Table I. For N = 4±11, we select the
groupings in which there is no interlacing of residues between

the different number of groups for N from 2 to 19; meanwhile,
the scores obtained from Equation 4 should be as large as
possible. The grouping result under such considerations is
listed in Table II. For N = 2,3 and N = 12±20, the groupings all
have the largest scores. For N = 4±11, the scores are slightly
less than their related largest ones. Because all the groupings
have no interlacing for N = 2±19, such a grouping is called a
no-interlace grouping. It should be noted that most of the
classi®cations for different N in Tables I and II are similar, and
there is only a minor difference in the location of the residue H.
One should also note that these results are almost the same as
different versions of BLOSUM.

The representative residues relating to two groupings in
Tables I and II are shown with bold letters. In Table II, the set
of representative residues for the no-interlace alphabet of a
®ve-letter alphabet are: Y, G, I, S, E, while the results found
experimentally (Riddle et al., 1997) or argued theoretically
(Chan, 1999; Wang and Wang, 1999) are I, A, G, E, K. Four of
them are coincident, I, A, E, G, since the score for residue A is
nearly the same for residue S (see Figure 2 for spectra of the
values for the score SP by different sets of representative
residues for N = 5 and 10). The representative residues of the
10-letter alphabet are C, Y, L, V, G, P, S, N, E, K. Note that the
score for residue I is also basically the same as for residue V.
As will be discussed in the next section, the ®ve residues (I, A,
E, K, G) may not be so good for simplifying the complexity of
proteins. Nearly saturated information for natural protein,
when compared with the whole set of 20 types of residues, can
be obtained by including an additional ®ve residues: C, Y, L, P,
and N. This means that a 10-letter alphabet may be the
minimum number of letters for the simpli®cation of protein
complexity. However, this requires further statistical study of
the folds of proteins.

Discussion

As expected, residues with similar physicochemical properties
are generally grouped together, such as the large hydrophobic
residues (L, V, I, M), the large and mainly hydrophobic
aromatic residues (F, Y, W), the long-chain positively charged
residues (K, R), the alcohols (S, T) and the charged/polar
residues (E, D, N, Q). From Table I, some of our results are
consistent with those obtained by others (Murphy et al., 2000;
Jonson and Petersen, 2001). When N = 2, our results are
consistent with the two-letter HP model where H represents the

Table II. Clustering of amino acids where there is no interlacing for
different levels of reduction

Group

2 CFYWMLIV GPATSNHQEDRK
3 CFYWMLIV GPATS NHQEDRK
4 CFYW MLIV GPATS NHQEDRK
5 CFYW MLIV G PATS NHQEDRK
6 CFYW MLIV G P ATS NHQEDRK
7 CFYW MLIV G P ATS NHQED RK
8 CFYW MLIV G P ATS NH QED RK
9 CFYW ML IV G P ATS NH QED RK
10 C FYW ML IV G P ATS NH QED RK
11 C FYW ML IV G P A TS NH QED RK
12 C FYW ML IV G P A TS NH QE D RK
13 C FYW ML IV G P A T S NH QE D RK
14 C FYW ML IV G P A T S N H QE D RK
15 C FYW ML IV G P A T S N H QE D R K
16 C FY W ML IV G P A T S N H QE D R K
17 C FY W ML IV G P A T S N H Q E D R K
18 C FY W M L IV G P A T S N H Q E D R K
19 C F Y W M L IV G P A T S N H Q E D R K
20 C F Y W M L I V G P A T S N H Q E D R K

Fig. 2. The representative residues for N = 5 and N = 10 for the no-interlace
alphabet. The letters in bold are the best sets from Equation 5.

Table I. Clustering of amino acids by the maximal score for different
levels of reduction

Group

2 CMFILVWY AGTSNQDEHRKP
3 CMFILVWY AGTSP NQDEHRK
4 CMFWY ILV AGTS NQDEHRKP
5 FWYH MILV CATSP G NQDERK
6 FWYH MILV CATS P G NQDERK
7 FWYH MILV CATS P G NQDE RK
8 FWYH MILV CA NTS P G DE QRK
9 FWYH ML IV CA NTS P G DE QRK
10 FWY ML IV CA TS NH P G DE QRK
11 FWY ML IV CA TS NH P G D QE RK
12 FWY ML IV C A TS NH P G D QE RK
13 FWY ML IV C A T S NH P G D QE RK
14 FWY ML IV C A T S NH P G D QE R K
15 FWY ML IV C A T S N H P G D QE R K
16 W FY ML IV C A T S N H P G D QE R K
17 W FY ML IV C A T S N H P G D Q E R K
18 W FY M L IV C A T S N H P G D Q E R K
19 W F Y M L IV C A T S N H P G D Q E R K
20 W F Y M L I V C A T S N H P G D Q E R K
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hydrophobic group (C, M, F, I, L, V, W, Y) and P the
hydrophilic group (A, G, T, S, N, Q, D, E, H, R, K, P). With
further division for N = 3, the hydrophilic group is divided into
two parts, namely the residues (A, G, T, S, P) and (N, H, Q, E,
D, R, K), while the hydrophobic group with a stronger
interaction is reserved. For N = 4, the hydrophobic group is
divided into two parts, i.e. the aromatic residues (F, W, Y) are
separated from the more hydrophobic residues (C, M, I, L, V).
In the intermediate levels of the reduction after N = 5, some
residues are singled out, such as the residues G, P and C,
respectively. Furthermore, in the later level of reductions, some
residues with very similar chemical propensities are still kept
in the same group, such as the residues S and T, the residues I
and V, the residues R and K, etc.

It is noted that the residues (G, P, C) are easily singled out
rather than clustered with other residues after N reaches a
certain number. Speci®cally, the residues G, P and C are
singled out at N = 5, 6 and 10, respectively. This is in
accordance with the results by Solis and Rackovsky (Solis and
Rackovsky, 2000), and can be reasonably understood from
protein structure. The in¯uence of three residues (G, P, C) on

folding of proteins is especially different. The amount of
residue G is large in most proteins, especially in loop or turn
regions. Thus, to simplify protein sequence by reducing the
alphabet and to reserve the information on the original
sequence as much as possible, it is rational that the residue G
is reserved rather than mutated. The reason for the residue P
being separated in the grouping is simple. The side chain of
residue P forms a ring with the peptide backbone and the
adjacent backbone conformations are severely affected. Thus,
it has a high preference in the b region. The residue C is quite
different since it can form a disul®de bond that is very
important in stabilizing the protein structure (Solis and
Rackovsky, 2000).

Now, let us make a comparison of the groupings in a real
case. It is well known that sequence motifs are those regions of
proteins where variability is limited, usually because of
structural constraints linked either to folding or to interactions
with cofactors, substrates or other proteins. It is found that
some regions of motifs are basically conserved. The dinucleo-
tide-binding motif (DMB) is one of the classical motifs, and it
is constituted of beta±alpha±beta (Vallon, 2000). As described

Fig. 3. One region of sequence alignment in the paper by Vallon (Vallon, 2000). The gray shaded regions are the conserved residues and those in the black
background are the most conserved. Many conserved residues coincide with our groupings. For each column, the numbers of groups occurring for the residues
are listed with respect to different grouping schemes, i.e. different values of N in Table II. The numbers of the occurring groups for alignment positions in the
gray and black background are less than those of the no-conserved region.
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in Vallon's work, classical DBM motifs can be found in the
N-terminal part of the sequence in most cases of ¯avoproteins.
The `GG motif' (RxGGRxxS/T) is found in L-amino acids
oxidase (LAOs) and in a wide variety of other ¯avoprotein
families. The conservation of some regions in the DMB and
GG motifs is shown in ®gure 1 of the paper by Vallon (Vallon,
2000). The grouping results are given in Figure 3, where the
gray shaded regions are conserved parts and the most
conserved residues are shown with a black background. From
Figure 3, one can see that most of the residues for alignment in
conserved regions coincide with the two-letter HP model from
our grouping. That is, the residues are either all hydrophobic or
all polar in the conserved positions. Some residues are
coincident with that in the groups of our grouping in Table II,
such as the residues with large hydrophobic side chains (L, V,
I, M), long-chain positively charged residues (K, R) and
alcohol residues (S, T). These residues have similar chemical
properties. The residues in each conserved position could be
classi®ed into several groups according to our grouping in
Table II for different N. The occurring numbers of the groups
for each position are shown below the sequences. One can see
that for the most conserved position in the black background,
the number of occurring groups is quite small. That is, the
number of groups is almost equal to one for all those columns.
The regions in the gray positions follow the same pattern, but
the conservation becomes slightly weaker. For the positions
without color, the numbers of the occurring groups are larger
than those of the above two regions. From Figure 3, we can also
see some typical examples of the similarity between the
residues (Miyata et al., 1979). Residues I and V play the same
role and they are exchangeable since they are basically the
same according to our grouping. One more example is that the
buried residue V or I can be replaced by residue L or V and the
structures and functions are the same when a family of CEA-
like protein sequences is aligned (Bates et al., 1992). Such
examples are also for residues M and L, and residues A and G,

and so on. In addition, many experimental ®ndings also
indicate similar results (Reidhaar-olson and Sauer, 1988). In
Figure 4, the numbers of the occurring groups versus the
reduced group number N is plotted. One can see that the curves
really relate to the above-mentioned results for three types of
positions, i.e. the smaller the number of occurring groups for an
aligned column, the larger is the similarity of these aligned
residues.

Performance evaluation of reduced alphabets

Methods

So far, we have studied the simpli®cation of residue alphabets
by comparing the similarity scores between the sequences
through the alignment. In this section, let us put these
simpli®ed alphabets to real protein sequences and evaluate
the effectiveness of these simpli®cations by comparing the
coverage of the homologous sequences detected via a simpli-
®ed matrix to that denoted in the database of SCOP40 (Brenner
et al., 1998). SCOP is a database of structural classi®cation of
proteins and provides a detailed and comprehensive description
of the relationship of the known protein structures (Murzin
et al., 1995). The classi®cation of the proteins in SCOP
includes four levels: the classes, the folds, the superfamilies
and the families. Proteins in the same superfamily and family
are believed to share the same ancestor, that is, they are
homologous. Furthermore, SCOP40 is a sub-database extracted
from SCOP (version 1.36). It consists of 1323 sequences that
share no more than 40% sequence identity and represents all
distantly related proteins in Protein Data Bank (PDB). These
sequences are divided into 639 homologous superfamilies. The
total number of aligned sequence pairs in the database SCOP40
is 1 750 329, in which 9044 homologous pairs are marked by
the database SCOP40 itself. Our evaluation of the effectiveness
of the simpli®cations will be based on the alignment between
all the sequence pairs in this database.

For the detection of protein homology from protein
sequences, a program named BLAST (Altschul et al., 1990)

Fig. 4. The numbers of occurring groups versus the reduced group number N
are plotted for three representative positions in Figure 3. For the most
conserved columns (in the black background), the numbers of groups
occurring are almost equal to one. For the columns with less conservation (in
the gray background), the numbers of groups occurring are also small. This
is because the properties of the amino acids in these conserved columns are
always similar, and they are grouped in the same groups. For the non-
conserved columns without color, the numbers of groups occurring are
apparently larger than those in the above two cases.

Fig. 5. The coverage scaled with its value for N = 20 for database SCOP40
versus the reduced letter N. The reduced no-interlace alphabets derived by
the method described in the text are shown (®lled squares). As a comparison,
two curves of the alphabets by Murphy et al. (Murphy et al., 2000) (open
circles) and Solis and Rackovsky (Solis and Rackovsky, 2000) (triangles) are
also plotted.
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is a widely used tool. In BLAST, the method of alignment of
two protein sequences is to seek an equal-length segment that
has a maximal aggregate score by a similarity matrix, such as
BLOSUM62. Thus, the homology of proteins can be detected
using a program called BLASTP, and an `all-against-all'
alignment between the sequences can then be worked out for
the database SCOP40. The coverage is de®ned as the number
of protein sequence pairs M, with the aligned score larger than
an expectation threshold value (E-value) divided by the total
number of the homologous pairs in SCOP40 (i.e. 9044 pairs):

C = M/9044 (6)

In addition, a function of error per query (EPQ) is de®ned as
the total number of non-homologous sequence pairs detected
by the BLAST program above the same threshold divided by
the total number of the queries, i.e. 1 750 329. Here the value of
EPQ is set as 0.001, which means that only 0.1% errors
occurred for the homologous detection. By varying the
threshold of the E-value, we choose the value of coverage C
as our ®nal result by keeping the related EPQ value <0.1%. The
gap insertion and elongation parameters for the alignment are
set to be ±11 and ±1, respectively.

For the `all-against-all' sequence alignment in BLASTP, a
similarity matrix, usually the BLOSUM62, is needed. Now in
our case, for various levels of simpli®cations of the residues,
the BLOSUM62 matrix should be simpli®ed according to the
reduced residue alphabets. The simpli®cation for the elements
in the BLOSUM is to replace the original elements of
BLOSUM62 with an average if these related residues are in
the same group, but not to make the substitutions of residues
falling into the same group. For the N-letter simpli®cation of
similarity matrix, the similarity score between residues
belonging to the ith group and residues in the jth group are
averaged by

BlosumN
ij �

Xg�i�
k�1

Xg�j�
l�1

Blosumkl=
Xg�i�

k�1

Xg�j�
l�1

�7�

Here k runs over the residues of the ith group, l runs over the
residues of the jth group, g(i) is the number of proteins in the ith
group and g(j) is the number of proteins in the jth group.

Results and discussion

The coverage for database SCOP40 versus the reduced letter N
corresponding to the no-interlace alphabet (Table II) for EPQ =
0.001 is shown in Figure 5 (here the coverage values are
normalized by the coverage at N = 20). From Figure 5, it is
clear that with different levels of reduction, the coverage
decreases as N decreases, i.e. the capability of the reduced
alphabets to recognize the protein sequence pattern decreases
when compared with that of the 20 letter alphabet (solid
squares). From N = 10 to 20, the values of the coverage are
>0.85, and for N = 8, the coverage decreases to ~0.56. Further
decreasing the value of N decreases the coverage rapidly. For N
= 2, the coverage is relatively small, 0.22, which is for the two-
letter HP case. Obviously, there is a plateau for N > 10, which
characterizes the saturation of the coverage to its value of N =
20. This means that groups more than N = 10 will not further
increase the ef®ciency of the description of the complexity of
proteins from the aspect of the sequence alignment. Thus, a
number around N = 10 may indicate the minimal number of

residue types to reconstruct the natural proteins, or a basic
degree of freedom of the complexity for protein representation.
This, in a sense, relates well to the argument by Baker and co-
workers (Plaxco et al., 1998), and also relates to our previous
work on the reduction of the complexity from the aspect of
residue±residue interaction (Wang and Wang, 2002).

For comparison, we also calculate the coverage related to the
clustering alphabets by Murphy et al. (see ®gure 1 in the paper
by Murphy et al., 2000) and by Solis and Rackovsky [see table
1(b) in the paper by Solis and Rackovsky, 2000]. For the
alphabets by Solis and Rackovsky, most of the values of the
coverage are smaller than those of our alphabets (see the curve
with the open triangles). The curve by the alphabets of Murphy
et al. gives similar results to ours except for N = 2 and 6. One
can see that the retained coverage for N = 2 is ~0.22 by our
alphabet, compared with the values almost being zero for the
alphabets by Murphy et al. and by Solis et al. Our result for N =
2 indicates that there is still some structure information
encoded in the protein sequences even for the two-letter
simpli®cation if the clustering or grouping of the amino acids is
reasonable. This is consistent with the results of some work on
protein folding by the HP model (Regan and Degrado, 1988;
Kamtekear et al., 1993; Davidson et al., 1995).

Summary

Previously, many studies on the simpli®cation of amino acid
alphabets have been obtained according to different criteria
such as physicochemical properties. The general properties of
various residues and the protein sequence features could be
suggested from these reduced amino acid alphabets. For
example, for the case of N = 2, i.e. the simplest case, the HP
model was derived in these studies. In addition, some residues
with similar chemical properties tend to be grouped together,
such as the hydrophobic residues (I, V) and the aromatic
residues (F, W, Y). Nevertheless, different simplifying
schemes embody different propensities of residues. For
example, the reduced alphabet derived from the MJ matrix
may be useful for folding since the simpli®cation is based on
the interaction between the residues. The reduced alphabets in
this work are derived from amino acid substitutions by scoring
similarities via the similarity matrix, which may be helpful for
the recognition of protein folds.

In summary, in this work we obtain reduced amino acid
alphabets by using a sequence alignment. The selected
alphabet reserves mostly the maximum information on the
original protein sequence. The alphabet is similar in some
letters to studies by others. However, our results are more
reasonable from many aspects. Our conclusion is that 10 types
of amino acids may be the degree of freedom for characterizing
the complexity in proteins. With 10 types of amino acids, the
information in the protein could make the protein closer to that
consisting of 20 amino acids. Some further work on protein
folding and design is necessary to clarify this point.
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