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In thiswork, the enhancementof coherence resonance of ¢rings in
a10-layer feedforward neuronal network with sparse couplings is
foundwhen there is noise input to each layer. Periodic signals with
frequency 30^80Hz are found to be well transmitted though the
network, and such a frequency sensitivity can bemodulatedby the
noise intensity and is di¡erent in di¡erent layers.When a random

pulse-like signal is input to the neurons of the ¢rst layer, the signal
can be well read out from the population rates in an optimal
range of noise intensity. This ability decreases as the layer index
increases. NeuroReport16:807^811 �c 2005 Lippincott Williams &
Wilkins.
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INTRODUCTION
Neurons can fire spikes when the total input crosses a
threshold. Information is contained in these activities. In a
classical view, the firing rate, namely the number of firing
events in a time bin, is used to carry and transform
information [1]. In this hypothesis, the exact timing of spikes
only reflects the noisy environment. Recently, a temporal
coding scheme, in which the precise location of spikes plays a
central role in coding information, has been developed [2,3].
Many groups of neurons, called functional cell assemblies,
are always involved in computing information. The informa-
tion is transferred from one subpopulation to another.
Therefore, to study the information processing in nervous
systems, it is reasonable to consider a multilayer feedforward
network. For such a topological structure, it is shown that
synchronous activities can propagate in a stable manner
under appropriate conditions [4]. Thus, it is possible that
firing rate can be transmitted in the feedforward network
because of synchronous firings. This possibility has been
approved by an experiment [5]. We have confirmed it
theoretically by modeling studies. It is found that synchro-
nization can develop gradually in the network and firing rate
can be transmitted when there is noise input to only the first
layer (i.e. layer 1). When the neurons are only subject to noise
input, it has been shown that spikes are discharged around a
main frequency, which is called coherence resonance (CR) [6].
How does the CR appear in the feedforward network? Such a
question is crucial for the transmission of neural activity.
In the architecture with multiple layers, when there exists

a signal input to layer 1 and small noise current in each
layer, the network operates in the synfire mode, that is, the
temporal code [7]. For the intermediate noise intensity,
the mode is changed to rate mode transmission, in which
the stimulus can be encoded by the firing rate [7]. Because
synchronous activities can survive and develop in the
network, can the rate code be changed to the synchronous

code in the process of signal transmission? It is also found
that there exists a frequency range of 30–80Hz in which the
periodic signal can be detected and transduced more
efficiently [8,9]. When a periodic signal is injected to all
the neurons of layer 1, how is the signal transmitted in the
feedforward network? Although it is well known that
synchronous activities can guarantee synaptic transmission,
what role does synchronization play in signal transmission?
Obviously, these questions are of importance for informa-
tion processing in nervous systems.

MODEL AND METHODS
To address these questions clearly, we constructed a
feedforward network containing 10 layers. Each layer
consists of N¼200 Hodgkin–Huxley (HH) neurons. The
neurons in the network are sparsely coupled: the probability
that a given neuron is connected with another neuron in the
previous layer is set to 0.1. No coupling exists between the
neurons within the same layer. The dynamical equations for
the network are presented as follows:

Cm
Vi;j

dt
¼� gNam

3
i;jhi;jðVi;j � VNaÞ � gKn

4
i;jðVi;j � VKÞ

� glðVi;j � VlÞ þ I0 þ I
syn
i;j ðtÞ þ Zi;jðtÞ;

ð1Þ

dmi;j

dt
¼ amðVi;jÞð1�mi;jÞ � bmðVi;jÞmi;j; ð2Þ

dhi;j
dt

¼ ahðVi;jÞð1� hi;jÞ � bhðVi;jÞhi;j; ð3Þ

dni;j
dt

¼ anðVi;jÞð1� ni;jÞ � bnðVi;jÞni;j: ð4Þ

Here, Cm is the capacity of the membrane. V, m, h and n are
the membrane potential, the activation and inactivation of
the sodium current, and the activation of the potassium
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current, respectively. VNa, VK, Vl are the reversal potentials
of the sodium, potassium and leakage currents. gNa, gK, gl
are the corresponding maximum values of conductance. The
layer indices are i¼1, y, 10, and the neuron indices are j¼1,
y, 200. All the functions and the parameter values are set
as Cm¼1 mF/cm2, VNa¼50mV, VK¼�77mV, Vl¼�54.4mV,
gNa¼120mS/cm2, gK¼36mS/cm2, gl¼0.3mS/cm2, and ah(V)
¼0.07e�(V+ 65)/20, bh(V)¼1/(1 + e�(V+ 35)/10), am(V)¼0.1
(V+ 40)/(1�e�(V+ 40)/10), bm(V)¼4e�(V+65)/18), an(V)¼0.01
(V+ 55)/(1�e�(V+ 55)/10), and bn(V)¼0.125e�(V+ 65)/80). All
the currents are in units of mA/cm2. I0 is constant bias
and taken as 1 mA/cm2. The term Zi,j(t) is a Gaussian white
noise background satisfying /Zi,j(t)¼0S,/Zi,j(t1)Zi,m(t2)S¼
2Didi,m(t1�t2), where Di is referred to as the noise
intensity of the ith layer. Here, we set D2¼D3¼y¼D10¼Ds.
The synaptic inputs from the previous layer is

I
syn
i;j ¼ �1=N

PNi;j

p¼1 gsynaðt� tði�1ÞpÞ � ðVi;j � VsynÞ with aðtÞ ¼

t=�ðe�ðt=�ÞÞ. Ni,j is the number of neurons in layer (i�1)
coupled to the (i,j)th neuron. gsyn, the synaptic weight, is
equal to 0.6. Vsyn represents the synaptic reversal potential
and is set to 0mV, meaning that all the couplings in the
network are excitatory. t(i�1)p is the firing time of the pth
presynaptic neuron in the (i�1)th layer coupled with the
(i,j)th neuron. Note that a presynaptic spike alone cannot
trigger the postsynaptic neuron to fire. t¼2ms is the rising
time of the synaptic input.
The firings of each neuron are recorded and converted

into a time series of standard pulses Uj with UA¼1 of width
2ms and UB¼0 corresponding, respectively, to the firing and

nonfiring states. The output of each layer can be defined as
Iouti ðtÞ ¼ 1=N

PN
j¼1 UjðtÞ. When a periodic signal input to

layer 1 exists, the output signal-to-noise ratio (SNR) is
defined as 10log10(S/B) with S and B representing the signal
peak and the average amplitude of background noise at the
input signal frequency in the power spectrum of Iouti ðtÞ,
respectively. An average over 50 different realizations of
noise seeds is taken to obtain the reported SNR values.

Numerical integration of these equations is performed by
a second-order stochastic algorithm [10] and the integration
step is taken as 1000/32 768ms. The average firing rate of
each layer is obtained by averaging over all the neurons in
this layer and over a long time, 20 s. All the error bars are

computed as f
Pn

i ðxi � �xÞ2=ng1=2.

RESULTSANDDISCUSSION
To simulate a realistic situation, a white noise is injected to
all the neurons in the network by setting D1¼Ds. The
spatiotemporal firing pattern of layer 6 with D1¼Ds¼3 is
shown in Fig. 1a as an example. It is clearly seen that some
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Fig. 1. (a) The spatiotemporal ¢ring patterns of layer 6 with D1¼Ds¼3.
(b) Power spectrum of the spike trains of several layers with D1¼Ds¼3
(in 10log10 scale). The curves are layers 1, 2, 3, 6, and 10, respectively,
from bottom to top. (c) b versus the layer index with D1¼Ds¼1,10, 50.
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Fig. 2. (a) Power spectrum of the spike trains of layer10 with D1¼Ds¼1,
10, 50 (in10log10 scale). (b) op in layer10 versus noise intensity. (c) b versus
noise intensity in the network in layers 6 and10.
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periodicity in spike trains exists. The power spectrum
densities of spike trains of several layers with D1¼Ds¼3
are plotted in Fig. 1b. In layer 1, a broad peak is observed.
Such a broad peak is a manifestation of CR, resulting from
the subthreshold intrinsic oscillation of HH neurons [9]. As
the layer index increases, the peak becomes higher and
sharper, meaning that the CR is enhanced. To characterize
CR quantitatively, we compute a measure of coherence b,
which is defined as b¼hop/Do. Here, h and op are the height
and the frequency at which the peak occurs and Do is the
frequency width of the peak at half-maximum height [11]. b
versus layer index is shown in Fig. 1c. It can be clearly seen
that the enhancement of the CR is significant in the first five
layers. Such a phenomenon also exists for different noise
intensities. Figure 2a plots the power spectrum densities of
spike trains of layer 10 with D1¼Ds¼1, 10, 50. For D1¼1, the
peak is broad. When D1 increases to 10, the peak becomes
higher and sharper. But as D1 becomes equal to 50, the peak
becomes lower. Note that when D1 increases, the frequency
at which the peak occurs increases, which is summarized in
Fig. 2b. op is mainly in a range of 40–80Hz. b versus D1 in
layers 6 and 10 are shown in Fig. 2c. When D1 increases, b
increases first and then decreases, and there is an optimal
noise intensity at which the value of b is maximal.
Next, we explore how a periodic signal is transmitted.

Here we assume that each neuron in layer 1 is subject to a
periodic subthreshold signal A cos(2pfst) with an amplitude
A¼1 and frequency fs. The SNR versus layer index is plotted
in Fig. 3a for fs¼20, 60, and 120Hz with D1¼3 and Ds¼0,
respectively. For fs¼60Hz, the SNR decreases slowly as the
layer index increases. But for fs¼20 and 120Hz, the SNR
drops fast. This phenomenon results from the fact that HH
neurons are more sensitive to the signals whose frequencies

are located in the range of 30–80Hz [9]. In such a sensitive
range, the neurons in layer 1 fire spikes with more
correlation. Synchronization can increase the safety factor
of synaptic transmission and improve the precision with
which temporal features of stimuli are transmitted [12].
Therefore, the signals in the sensitive range can be
transmitted more efficiently [see Fig. 3b]. Such a sensitive
range is really related to the so-called 40Hz oscillations in
nervous systems [13]. But for signals with frequencies
beyond the sensitive range, there are many packets of
synchronous activities in deep layers arising from the noise
input, which result in signals being transmitted weakly.
Note that the values of SNR become saturated in layer 7
because of the saturation of the synchronization. As shown
in Fig. 3c, when there exists noise input in the whole
network, the transmission of signal is almost impossible for
fs¼20 and 120Hz. However, the SNR can sustain nearly as a
constant for fs¼60Hz as the layer index increases, indicating
that the signal with fs¼60Hz can be transmitted better with
Ds¼5 than with Ds¼0 (see Fig. 3a and c). For signals with
frequencies outside the sensitive range, adding noise input
to all layers can increase the number of packets of
synchronous activities arising from the noise in deep layers.
Clearly, these signals are transmitted more weakly. But for
signals with frequencies in the sensitive range, synchroniza-
tion arising from signal input can prevent synchronization
arising from noise input developing in the network. This
results in these signals being transmitted more efficiently
(see Fig. 3d). That is, the noise input to all layers can make a
periodic signal encoded more accurately in deep layers if the
signal can evoke activities with more correlation in layer 1.
In order to examine more realistic situations, a random

signal-like pulse, generated by poisson process, is injected to
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Fig. 3. (a,c) The signal-to-noiseratio (SNR) versus layer index withD1¼3 in the case ofDs¼0 and 5 for di¡erent signal frequencies: 20Hz (*), 60Hz (!),
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the neurons of layer 1. The input takes the form
SðtÞ ¼

P
y¼1 APyaðt� tyÞ. Here, A is the amplitude and ty is

the time when the events take place. When an event
happens, a random number Py is generated, which lies
between 0 and 1. Because NIouti ðtÞ can be regarded as the
number of firings in a time bin in the ith layer, the
performance of population rate coding in the ith layer can
be evaluated by the maximum Ci of the coefficient ci(t),
which is the correlation between Iouti ðtÞ and the input signal.
Here, ci(t) is defined as

cið�Þ ¼

P
ðsðtÞ � �sÞðIouti ðtþ �Þ � �IoutiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

ðsðtÞ � �sÞ2
P

ðIouti ðtþ �Þ � �Iouti Þ2
q : ð5Þ

The overbar represents an averaging over time. The input
signal Iouti ðtÞ and of several layers is plotted in Fig. 4(a–f). In
the first three layers, the signal can be well read from Iouti ðtÞ,
that is, these three layers work as efficient population rate
coders. However, when neural activities propagate across
the layers, only the packets of synchronous activities can
survive and develop. This results in detailed information
about the stimulus being gradually lost in the process of
activity transmission. That is, the population rate code is
gradually changed to the synchronous code through multi-
ple layers, which makes the signal poorly encoded in deep
layers. As shown in Fig. 5a, as the layer index increases, Ci

decreases fast for different noise intensities. For each layer,
there is a noise intensity with which the signal can be best

read from the population rate (see Fig. 5b) because the
signal used here is subthreshold. In addition, as can be seen
from Fig. 4f, in deep layers, some synchronous packets
result from only the noise input, which do not contribute to
the encoding of the signal. When the noise intensity is large,
much more synchronous packets arise from the noise input,
which results in the signal being encoded more poorly.
Therefore, in deep layers, the stimulus can hardly be read
from the population rate with large noise intensity (see Fig.
5b). In our simulation with the HH neuron model, only the
signals like pulse can be transmitted and the consecutive
signals cannot be read from the population rate in deep
layers. When there is a signal input like pulse in layer 1, the
mode switch can take place in the process of activity
transmission. By contrast, in [7], the mode is changed by
altering the intensity of the noise current and the input
signal is consecutive.

CONCLUSION
In this paper, it is found that CR is very significant in deep
layers of a 10-layer feedforward network when noise
current exists in all layers. On signal input to the network,
the signal is encoded well by the population rate in the first
three layers but the mode is switched to the synchronous
mode in deep layers. In addition, a frequency sensitivity of
signal transmission is also found for such a network.
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