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Signal-to-noise ratio gain in neuronal systems
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We explore the possibility of a signal-to-noise raf®NR) gain both in a single neuron and a neuronal
network. In the presence of a weak sinusoidal or pulse signal and Gaussian noise, the output SNR can exceed
the input SNR over a wide range of noise intensities. The high output SNR and SNR gain can be acquired
coincidentally at optimal noise levels. The results further verify that noise can play a constructive role in
sensory processing in neuronal systems.
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The response of nonlinear systems to weak periodic dh h.(V)—h
stimuli and noise is known to exhibit cooperative effects, R (©)

including stochastic resonan¢8R). SR is a nonlinear phe-
nomenon wherein the output signal-to-noise r@8dlR) can
be optimized by a particular level of noig]. SR has been =
investigated in a wide variety of nonlinear systems, espe- dt (V)
cially in neuronal systems. It was demonstrated that noise , ,
can play an active role in signal processing. However, anti€réV, m, h, andn are the membrane potential, the activa-
other significant issue has received less attention, namel{ion @nd inactivation of the sodium current, and the activa-
whether it is possible to make the signal detectability at théion Of the potassium current, respectively, , gk, andg
output exceed that at the input in a suitably optimized nonare the maximal values of conductance of the sodium, potas-
linear system. This is important for practical applicationssium, and leakage currentdy , Vi, andV, are the corre-

of SR. sponding reversal potentialg,, is the capacity of the mem-

It was proven theoretically that the output SNR can nevelprane. The parameter valud$] are VNa:5o mV, Vi
gxceed the |nput.S!\|R if nonlinear systems perform in the_ _ 4 mV, V,=-544mV, gy =120mS/cr, gk
linear response limite.g., under the conditions where the a
signal amplitude is much smaller than the noise strength i S0 _mS/cn%, 9=0.3 mS/cr, and Cp=1 uF/cn¥. The
bistable systems[2]. On the other hand, a SNR gain has unctions m°°.(V)’ ho(V), n(V), 7m(V), 7(V), and
been observed in electronic analog circlig an optically ~ 7n(V) are given byx..(V)=a,/(ax+by) and r(V)=1/
bistable elemer{i4], a level-crossing detectd®], a rf super- (& Fbx) with x=m,h,n. That s, a,=0.1(V+40)/
conducting quantum interference device I66p and a static  (1—e~ (V4019 b =4e~ (V*6I18 5, =007 (V6220
nonlinear transfef7], etc., all working in the nonlinear re- b,=1/(1+e~ (V™399 g =0.01(V+55)/(1—e~ (V*59/19,
sponse regime. But to our knowledge, it has not been clarigndb,=0.125%(V*+65/80

fied whether it is possible to obtain enhanced Signal detect- We assume that the neuron is subject to a subthreshold

ability in neuronal systems in the presence of Gaussiagignal,s(t)=A cos(2fd) plus a constant bial, as well as
noise. If a noisy signal can become less noisy after transdug Gaussian noise(t) satisfying

tion by neurons, their signal-processing capability will be

largely improved. (n(1))=0, (7m(t)n(ty))=Dre N7t (5
Motivated by the aforementioned considerations, we ex-

plore the possibility of SNR gain both in a single neuron andHere D represents noise intensity ands the inverse of the

a neuronal network. It is demonstrated that the SNR imcorrelation time.z(t) is taken as the white noisge., Al

provement effect occurs in both cases, especially more rezquals to the integration step, 500/32 768 thsoughout the

markable in the network case, in the presence of a weafaper, otherwise specified elsewhere. The numerical method

d w(V)—
dn_n.(V)—n @

periodic signal and Gaussian noise. for solving Egs(1)—(4) is based on a second-order algorithm
We begin with the Hodgkin-Huxley(HH) neuronal  proposed in Ref{9]. An average over 100 different realiza-
model, whose dynamics is described as follows: tions of noise seeds is always taken to obtain final results.

Note that a spike occurs whaf(t) exceeds-20 mV. In

dv our simulations the time course df(t) is converted into a
Cma= —gNam3h(V—VNa)—gKn4(V—VK) time series of standard pulseKt) with Uy=1 of width 2
ms andU =0 corresponding, respectively, to the firing and
—gi(V=V))+1o+s(t)+ 5(t), ) nonfiring states. We use the fast Fourier transform to com-

pute the power spectral density of signals. The SNR is de-

fined as 10logy(I'/B) with I' and B representing, respec-
d_m: m.(V)—m @) tively, the height of the signal peak and the mean amplitude
dt (V) of background noise at the input signal frequerigyn the
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FIG. 2. (a) y, and(b) g, vs the signal frequency fdb=2 and
10. For each frequency the signal amplitudé\is 1.

g, (dB)

although there still exists the skipping in firing. Thug,
quickly rises and reaches its maximum. Bsfurther in-
creases, while the neuron fires more frequently, the coher-
ence of the firing with the signal decays gradualy.thus
drops remarkably. On the other hand, the increasb af-
ways diminishes the order in the input since it is a linear
summation of the signad(t) and the noiseyp(t). Thus, v,

FIG. 1. (@ The SNR vs the noise intensiy for the case of ~drops monotonically with increasing. But y;, has a much
fs=70 Hz andA=1. The biasl, is taken as 1 throughout the larger value thany, for low noise level. In the case of high
paper. The inset ig, vsD. (b) g, vs\ for D=2 and 10. The inset noise level, the periodic signal may be nearly submerged by
is g, vs the signal amplitudé for D=1 and 10. the noise, whereas the output still contains prominent peri-

odic components since the firing is modulated by the signal.
power spectruni10]. The SNR for the inpus(t) + »(t) and  As a result,y, is larger thany,, over a wide range of noise
the outputU(t) is simply denoted ay;, and vy, . g, repre- intensities.
sentsy,— Yin - It is worth noting that the SNR gain is closely related to

Figure Xa) showsy;, andy, versus the noise intensiy  the correlation properties of input noise. Figui®)ldepicts
in the case off ;=70 Hz. Clearly,y;, decreases monotoni- g, versus\ for D=2 and 10. Obviouslyg, rises with in-
cally with increasingD. Differently, vy, first rises up to a creasing\ but is negative when=30. In fact,y;, decreases
maximum aroundD,=1.5 and then drops &3 increases, remarkably whiley, varies slightly as\ rises. v, drops
exhibiting the typical characteristic of SR. In additiop, is  monotonically with increasing. because the correlation in
first smaller and then larger thap,, as seen in the inset of the noise diminishes. For small the firing exhibits an evi-
Fig. 1(a). g, is negative whed <1 and becomes positive if dent coherence with the signal, while for laryethe firing
D>1. g, also first rises but then drops much more slowlyrate rises slightly but the firing coherence with the signal
with increasingD, with a maximum of 3.7 dB aroun®, becomes weak. This makeg, change slightly. The result
=3. This indicates that the output SNR can exceed the inpuimplies that a high SNR gain can be obtained if the input
SNR over a wide range of noise intensities. Note thais  noise has a high cutoff frequency. In addition, when the sig-
larger atD,, than atD. by 1.2 dB whileg, is larger atD. nal amplitudeA increasegat fixed noise intensijy both y;,,
than atD,, by 1.8 dB. Therefore, the neuron can acquire aand vy, rise, while the SNR gain first rises and then drops.
large output SNR as well as a high SNR gain at optimalFor low noise level P<2), g, first drops for weak signal
noise levels D,,<D=D_.). This can largely contribute to driving before it increasekThis is clearly seen in the inset
weak signal detection and transduction in neuronal systemsf Fig. 1(b). It is noted thatg, can also be positive for the

In the case of low noise level, the firings of the neuron aresuprathreshold signals.e., A>A;,=1.38), although no SR
often separated by several driving cycles owing to the smalkffect occurs therein.
effective stimulus strength. This leads to a small valug pf We also investigate the responses of the neuron to various
As D rises, the firing rate increases and the correlation besinusoidal signals with the identical amplitude. Figuke)2
tween the firing and the periodic signal is enhanced. Th&howsy, versus the signal frequendy for D=2 and 10.
neuron discharges spikes around the maxima of the signa@learly, y, has relatively large values for signals with fre-
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be observed only for suprathreshold signals in a bistable sys-
tem driven by a harmonic force and Gaussian noise. Al-
though the response of a neuron to periodic stimuli plus
noise can in some cases be approximated by periodically
driven noisy underdamped dynamids3], it cannot be sim-
ply viewed as an overdamped motion of a point particle in a
bistable systen{1]. For an underdamped bistable system,
there exist multitimescales controlled separately by intrinsic
damped oscillation, noise-induced transition between wells,
and the input periodic stimulus. The cooperation of these
effects results in the optimal response of the system, leading
to the reported intrawell SR and interwell §R3]. Differ-
05 10 20 30 ently, for an overdamped bistable system, there exists only
Noise Intensity D (uA%cm’) interwell SR. That is, the optimal enhancement effect of
switching results from the match between the noise-induced
FIG. 3. The SNR vs the noise intensilyin the case of a pulse well-to-well transitions and the periodic signal. Therefore,
signal with a frequency of 70 Hz. The insetdg vs D. for the HH model, its gain behavior is largely different from
that of overdamped bistable systefd&] due to the coexist-
quencies in the range of 400 Hz. That is, the neuron is ence of intrawell SR and interwell SR. Summarizing, when
more sensitive to these signals. Such frequency sensitivity iwe consider a more realistic model of neurons, it is possible
more remarkable for low noise level and results from theto observe the SNR improvement effect even in the presence
resonance between the periodic signal and the subthreshoddl a sinusoidal signal. This also extends the observations in
intrinsic oscillation. The physical argument for this has beerRef. [5].
presented in Ref11]. Figure 2b) plotsg,, versusf,. Obvi- Finally, we explore the neuronal network case wherein
ously, for D=2, g, takes a positive value for 40fg the neurons are globally coupled with each other and subject
<100 Hz, while forD=10,g, is positive for each fre- to a common cosinusoidal signal and independent noise.
quency considered here except fgr=20 Hz. In the case of Thus, a synaptic current item gets added on the right side of
small noise level, the neuron fires rarely for high signal fre-Eg. (1) as follows:
quency, or the firing exhibits a weak coherence with the N
signal for low signal frequency. These lead to a small value Osyn i
of y, as well as a negative value of, for low and high lisyn(t):_j:lE,j#:i N ATV V) 0V = Vip),
signal frequency sincey;, is much larger. For high noise (6)
level y,, becomes far smaller, whilg(t) still contains the
periodic components and displays a coherent activity. Thusyith a(t—tj)Ea(t’)=t'/re’t"’. t; is the firing time of the
gy has a positive value. In additiog,, also takes large val- jth neuron when its membrane potential exceeds the firing
ues for Signals with @fsg 90 Hz. This indicates that the thresho]dvth: —-20mV, =2 ms is the characteristic time

neuron exhibits a better detectability for these signals. of excitatory postsynaptic potentia\y.isjyn is the synaptic re-
It is noted that the output SNR can exceed the input SNRgrsa| potential between thigh and jth neurons, and its
not only in the presence of sinusoidal signals. Figure 3 showgg e is randomly taken as 80 or 0 mV corresponding
vu and y;, for the case wherein the neuron is subject 10 &egpectively, to the inhibitory and the excitatory coupling.
p_enodlc pulse S|g_nal with a frequency _of 70 _Hz. The dura—gsyn is the coupling strengthd(x) is the step function with
tion of the pulse is 2 ms and the amplitude i$a® a sub- 0(x)=1 if x=0 andA(x)=0 if x<0. The number of neu-

threshold signal Such a signal can model visual stimuli or < in the network is taken &&= 100. The average synaptic
the synaptic inputs from other neurons. Similar results to Fig.rrent is

1 can be observed here. Bsincreasesy;, drops monotoni-

cally while v, first rises and then decreases with a maximum 1 N

aroundD ,= 1. The inset of Fig. 3 depict, versusD. g, is Ayl = > 1. (7)

positive whenD>0.8 and reaches its maximum ne@ag =1

=2. Here the SNR gain can be as high as 5.1 dB since thg? . i

firing can acquire a strong correlation with the pulse signal. he output of the network is defined as

These indicate that the SNR gain is robust to stimuli. N
We have demonstrated that the detectability of a noisy |out(t):£ 2 Ui(t). ®)

signal after transduction by a neuron can be better than that N=

of the incoming signal from the environment. This is of func-

tional significance for sensory processing in neuronal sysThe SNR forl°U(t), Asyr(t), andU,(t) is simply denoted

tems. In fact, an important problem concerned with applica@sy,, ya, andyy . Forl°“(t) andAgy.(t) the input SNR is

bility of the SR effect is the potential possibility to increase obtained by taking an average over the input SNR of each

the SNR of a noisy signal after information transfer. How-neuron.g,, ga, andgy are the corresponding output SNR

ever, it was recently reportg¢d?2] that positive SNR gain can minus the input SNR.

20

SNR (dB)
s

D (pA¥cm®)

— ’Yin
[ — Y,
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@ We have previously discussed the SR effects in a globally
40y, coupled neuronal network based on the Hindmarsh-Rose
~ (HR) neuronal mode[14]. Figure 4b) displays the differ-
@ 30 ence between the output and input SNRs. Clearly, the value
% i T of gy also increases compared with the single-neuron case,
2] +1A although it still takes a large negative value for very low
Lob . noise level.g, andg, are much larger thag, and are al-
. . ways positive. They decrease much more slowly after the
® maximum is reached. Note that bofhy (y,) and g, (ga)
20¢ have large values for €D=<3. In other words, the high

output SNR and SNR gain can be acquired at the same noise
level. This implies that the signal-processing capability of
neurons could be largely improved by an optimal noise level.
The results also indicate that the information about input
signal can be precisely conveyed by pooling of the individual
responses.
) ) s In this paper we have investigated the possibility of SNR
Noise Intensity D (nA’/cm’) improvement both in the single neuron and the neural net-
work cases. In the presence of a periodic sinusoidal or pulse
signal, the output SNR can exceed the input SNR over a
wide range of noise intensities, and such an effect is more
remarkable in the network case. The high output SNR and
SNR gain can be acquired coincidentally at optimal noise
levels, and this largely contributes to signal processing. Such
a discussion further verifies that noise can play a constructive
‘riole in weak signal detection and transduction of neurons.
inally, it is stressed that the conclusion obtained here also

g (dB)

FIG. 4. For the neuronal network cage. The SNR vs the noise
intensity D in the presence of a sinusoidal signal with=70 Hz
andA=1. (b) The SNR difference v®. g, is set as 1 and the
fraction of all the couplings being excitatory is 0.667.

Figure 4a) shows the SNR versus the noise intengltin

the case off=70 Hz. All the curves exhibit the typical
characteristic of SR: first a rise and then a drop. Compare
with the single-neuron case, th_e v_al_ue)@fnses slightly. As holds true for other neuronal models, such as the HR model.
the mean of the responses of individual neurons can average
out the uncorrelated parts and enhance the periodic compo- The work was supported by the Outstanding Young Re-
nents,y, and y, are much larger thawy . In addition, both  searchers’ Foundation under Grant No. 19625409 and the
the curves are basically overlapped except for low noiséNational Natural Science Foundation of China under Grant
sincel °(t) andAgy(t) exhibit nearly the same periodicity. No. 30070208.
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